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What do we 
want?



Expectations

PredictabilityReproducibility

Independence Scalability

PerformanceReliability

Traceability Innovation



Deployment Pipeline

Source: http://continuousdelivery.com/2010/02/continuous-delivery/

http://continuousdelivery.com/2010/02/continuous-delivery/


Challenges



Changes since 2013?

More projects

More remote 
workers

More employees

More customers

Source: https://twitter.com/gabrealness/status/723434940734431237

https://twitter.com/gabrealness/status/723434940734431237


How did we 
get there?



Invest

“If I had eight hours to chop down a 
tree, I'd spend six hours sharpening my 

ax.” – Abraham Lincoln

“We learn geology the morning after the 
earthquake.” – Ralph Waldo Emerson



Improve

More Tests/
More Testing

Better 
communication

Better 
documentation

Leverage new tools!

Faster Release 
Cycle



Workflow + Pipeline

Jenkins verify
(-1/+1)

Code Reviewers
(-2/-1/0/+1+2)

Debian builds (+PPA)

Submit to
{master,$branch}

Release
dashboard

git commit &&
git review

Final Debian
build

$Release
(incl. Q/A)

Available to
Customers

$Product

Internal 
tooling

Debian package,
Puppet,...

Development/
Testing



Code 
Review



Source: https://memegenerator.net/instance/53083760

Gerrit
GitLab

Phabricator
Review Board

https://memegenerator.net/instance/53083760


Advantages of CR

Share
knowledge

Broadcast 
progress

Improve 
maintainability

Communal 
ownership

Better
code



Gerrit



Git review





Git review - Download



Webinterface Gertty

Gertty: use gerrit without the web



•Good review culture

meaningful 
response cycles

include + integrate 
newbies/new 

employees

be friendly

Source: https://xkcd.com/303/

Waiting for review!

https://xkcd.com/303/


•Best Practices 1

keep reviews as small as feasible
(hint: also makes testing easier)



•Best Practices 2

use Code Review also 
for Infrastructure 

changes! (IAC)



•Best Practices 3

no direct pushes to 
production branch



Traceability via Branches

Branch/Tag
↕

Environment/Release
↕

“vagrant up $release”



Traceability via Commits

“ID#XXXXX“ in commit message 
to point to according

issue/bug number



Challenges

Different 
timezones

Added
delaysRefactorings

New
workflow

Culture
change



Warning

Laaaaaarge 
change?

Tiny 
change?

“Uff, +2”

“Please rename 
$this, quote the 

variable, the logic 
could be simplified 

like…”



*Cough*

Source: http://www.bonkersworld.net/code-reviews/

http://www.bonkersworld.net/code-reviews/


Resources

• “Expectations, Outcomes, and Challenges of Modern 
Code Review” [URL]

• “Characteristics of Useful Code Reviews: An Empirical 
Study at Microsoft” [URL]

• “Code Reviews Do Not Find Bugs. How the Current 
Code Review Best Practice Slows Us Down” [URL]

• “On Rapid Releases and Software Testing” [URL]
• “Modern Code Reviews in Open-Source Projects: 

Which Problems Do They Fix?” [URL] and also the 
other “TestRoots Publications” [URL]

http://research.microsoft.com/apps/pubs/default.aspx?id=180283
http://research.microsoft.com/apps/pubs/default.aspx?id=249224
http://research.microsoft.com/apps/pubs/?id=242201
http://swat.polymtl.ca/~foutsekh/docs/PID2891705.pdf
http://sback.it/publications/msr2014.pdf
http://testroots.org/publications.html


Testing 
Tools



Testing Pyramid

Unit Tests

System

Integration Tests



Goss

• https://github.com/aelsabbahy/goss/
• Serverspec-like tool for validation
• Golang  one single static binary →
• RSpecish, nagios, json, JUnit + TAP 

output available
• Limited to Linux (so far)

https://github.com/aelsabbahy/goss/


Goss Resources

addr is reachable

command exit status and outputs

dns is resolvable

file file exists, owner/perm, content

group uid

package is listening, listening ip

port is running

process Is running

user uid, home, etc..



Goss - Demo

mika@osdc ~ % goss autoadd ssh   
Adding Group to './goss.yaml':
ssh:
  exists: true
  gid: 103
Adding Package to './goss.yaml':
ssh:
  installed: true
  versions:
  - 1:6.7p1-5+deb8u2
Adding Process to './goss.yaml':
ssh:
  running: true
Adding Service to './goss.yaml':
ssh:
  enabled: true
  running: true



Goss - Demo

mika@osdc ~ % cat goss.yaml
package:
  ssh:
    installed: true
    versions:
    - 1:6.7p1-5+deb8u2
service:
  ssh:
    enabled: true
    running: true
group:
  ssh:
    exists: true
    gid: 103
process:
  ssh:
    running: true



Goss - Demo

mika@osdc ~ % goss validate goss.yaml 
.......

Total Duration: 0.066s
Count: 7, Failed: 0
mika@osdc ~ % goss add port 22  
Adding Port to './goss.yaml':

tcp:22:
  listening: true
  ip:
  - 0.0.0.0
mika@osdc ~ % goss validate goss.yaml 
.........

Total Duration: 0.070s
Count: 9, Failed: 0



Goss - Demo

mika@osdc ~ % sed -i 's/tcp:22/tcp:23/' goss.yaml
mika@osdc ~ % goss validate --format tap goss.yaml
1..9
ok 1 - Group: ssh: exists: matches expectation: [true]
ok 2 - Group: ssh: gid: matches expectation: [103]
ok 3 - Service: ssh: enabled: matches expectation: [true]
ok 4 - Service: ssh: running: matches expectation: [true]
ok 5 - Process: ssh: running: matches expectation: [true]
not ok 6 - Port: tcp:23: listening: doesn't match, expect: 
[true] found: [false]
not ok 7 - Port: tcp:23: ip: doesn't match, expect: 
[["0.0.0.0"]] found: [null]
ok 8 - Package: ssh: installed: matches expectation: [true]
ok 9 - Package: ssh: version: matches expectation: [["1:6.7p1-
5+deb8u2"]]



py.test

• Pytest.org
• Fixtures, Scopes, Monkeypatching
• JUnit + TAP output (hello Jenkins!)
• Plugins
• Example + starting point:

– https://github.com/vincentbernat/ll
dpd/tree/master/tests/integration
– http://www.slideshare.net/VincentBer

nat/pytest-all-the-things

https://github.com/vincentbernat/lldpd/tree/master/tests/integration
https://github.com/vincentbernat/lldpd/tree/master/tests/integration
http://www.slideshare.net/VincentBernat/pytest-all-the-things
http://www.slideshare.net/VincentBernat/pytest-all-the-things


Package dependencies

• Dose-distcheck
• Are package dependencies/conflicts 

satisfiable?
– dose-debcheck for Debian packages
– dose-rpmcheck for rpm packages
– dose-eclipsecheck for OSGi plugins



Puppet Testing

Puppet testing: see David Schmitt’s talk 
“Introduction to Testing Puppet Modules” at 

2:15pm on Thursday at OSDC

Puppet-lint

RSpec-puppet

Beaker



Tests + Infrastructure 1

Tests for everything ASAP!

avoid problems during commit/push time +
don't rely on historic/explicit knowledge  →

new employees will have a hard time otherwise



Tests + Infrastructure 2

Test systems to
work on infrastructure

without breaking production



Tests + Infrastructure 3

Test infrastructure
really for everything

testing a change for the test builds/scripts?
use test environment!



Related Resources

• „Advanced Testing 
with Go“ [URL]

• „System Testing 
with pytest and 
docker-py“ [URL]

• Book “How Google 
Tests Software”

Source: https://twitter.com/francesc/status/718604718294097920

https://speakerdeck.com/mitchellh/advanced-testing-with-go
https://docs.google.com/presentation/d/1RoxFXCOOnXOZZzOivV7mqTs5-B-pxgKCkvX2flianvc/mobilepresent?pli=1#slide=id.p


Docker



Obligatory Docker Slide

Source: https://twitter.com/sadserver/status/718455853540487168

https://twitter.com/sadserver/status/718455853540487168


Source: https://twitter.com/mfdii/status/697532387240996864

https://twitter.com/mfdii/status/697532387240996864


Our use cases

Fast test cycle to 
avoid long feedback 

loops in CI/CD 
pipeline Share environment 

between developers 
and testing 

infrastructure
Developers should be 

able to control  testing 
infrastructure



Internal docker registry

Docker-registry
Docker-distribution
(implementation of 

Docker Registry 
HTTP API V2 for 

docker 1.6+)

Fast moving



•Workflow

 Image lifecycle is 
tricky though (when 

to build/destroy, 
naming + tagging 
conventions,…)

Every project ships its 
own Dockerfile(s), 
Jenkins identifies 

changes and rebuilds 
the docker images



Infrastructure 
Tooling



Puppet related

• Puppet environments + r10k
• Hiera
• Puppetdb + ansible
• Mcollective
• Puppet codebase from 2.7 to 4.3
• Puppetdashboard  puppetboard→
• Own puppet modules  Puppet Forge→



Monitoring?

Long running tests failing with 
ENODISKSPACE

automatic cleanups
(get rid of old artifacts, caches,…) +

use appropriate monitoring



Monitoring

Metrics + Logging

what is taking long + is worth 
improving/investigating/....?

(ELK, Graylog, InfluxDB, Grafana,…)



Monitoring Software

Check-mk

Icinga 2 with puppet-icinga2



Vagrant/Packer +
grml-debootstrap

Grml-debootstrap for building Debian 
(based) base boxes [URL] 

Vagrant + Packer by HashiCorp 
(Packer = replacement for Veewee,

hit Debian/unstable today [URL])

https://github.com/grml/grml-debootstrap/tree/master/packer
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=740753#98


Disaster recovery

• Daily fresh installation 
of nodes

• PIN-protected USB pen 
drive with sensitive 
data on it (e.g. hiera)

• iPXE + Grml ISO with 
netscript=… boot 
option to deploy

• netboot.xyz

Source: https://www.istorage-uk.com/product/datashur/



Antipatterns



Thx @ThePracticalDev + http://dev.to/rly

https://twitter.com/thepracticaldev
http://dev.to/rly
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https://twitter.com/thepracticaldev
http://dev.to/rly
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https://twitter.com/thepracticaldev
http://dev.to/rly


Thx @ThePracticalDev + http://dev.to/rly

https://twitter.com/thepracticaldev
http://dev.to/rly


Pain
Points



Misunderstandings 1

Different people/teams have
different use cases, understandings,…
of certain things (e.g. meaning + usage of 

-1/-2/+1/+2 in Gerrit)

Fix via documentation!



Misunderstandings 2

Cultural differences

Fix via „Team Handbook“,
like the one from Gitlab [URL]

https://about.gitlab.com/handbook/


Debian related 1

Race-free package info updates
AKA „Hashsum Mismatch Error“

Fix see [URL]

http://www.chiark.greenend.org.uk/~cjwatson/blog/no-more-hash-sum-mismatch-errors.html


Debian related 2

Avoid Pre-Depends, they impose harsh 
constraints on the package manager, 

consequently make upgrades harder + also 
cause more problems with piuparts



Debian related 3

The more sophisticated the systems 
become, the closer the toolchain needs 

stuff Debian has + uses 
(britney/dak/piuparts/nose/…)



Debian related 4

Mass changes?

Repository locking problem
with e.g. reprepro :(



Jenkins related 1

Structuring of hundreds/thousands of 
Jenkins jobs in jenkins-job-builder isn't 
easy, esp. the more exceptions you have



Jenkins related 2

Unreliable tests?

Run them outside of the production pipeline!
Use whitelists/blacklists to reach 100% 

coverage over time!



Jenkins related 3

Matrix jobs in Jenkins are not always fun, 
use simple plain freestyle Jenkins jobs 

when possible



Availability

Downtime of Jenkins :(

Lenient Shutdown
Zuul + Gearman

Jenkins 2.0 with Pipeline



System Design

Some architecture decisions are visible 
only after surviving a new $release 

(Debian: wheezy jessie)→



Separation

Full-featured PPAs: bound together with 
Gerrit topics to share packages from 

different projects (new features, 
introducing new components/build-

depends,…)



Avoid backwards 
compatibility nightmare

Release-specific settings into
release-specific configurations/scripts/… 



Take-
aways



Take it home

• Automation is essential
• Configuration Management
• Traceability
• Code Review
• Tests + Testing
• Communication is important
• Bring devs and ops together (“devops“)



Wishes || Questions?

@mikagrml
mika @ github

michael-prokop.at/blog/
prokop (at) grml-solutions.com

http://twitter.com/mikagrml
http://grml-solutions.com/?osdc2016
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