
Michael Prokop

Continuous Integration in Data Centers
Further 3 Years Later

% whoami

Project leader of Grml.org

Debian Developer

Jenkins-debian-glue.org

Independent Consultant

Source: https://flic.kr/p/pzMqux

Mika || @mikagrml

https://flic.kr/p/pzMqux

Recap from
OSDC 2013

Puppet

Jenkins-debian-glue.org

Jenkins

Why Continuous Delivery?

Vagrant/Veewee

Admin Docs
(Sphinx)

Custom Grml ISOs (grml-live/grml2iso)

Roadmap
What do we want?

Challenges
How did we get there?

Code Review
Testing Tools

Docker
Infrastructure Tooling

Antipatterns
Pain Points

What do we
want?

Expectations

PredictabilityReproducibility

Independence Scalability

PerformanceReliability

Traceability Innovation

Deployment Pipeline

Source: http://continuousdelivery.com/2010/02/continuous-delivery/

http://continuousdelivery.com/2010/02/continuous-delivery/

Challenges

Changes since 2013?

More projects

More remote
workers

More employees

More customers

Source: https://twitter.com/gabrealness/status/723434940734431237

https://twitter.com/gabrealness/status/723434940734431237

How did we
get there?

Invest

“If I had eight hours to chop down a
tree, I'd spend six hours sharpening my

ax.” – Abraham Lincoln

“We learn geology the morning after the
earthquake.” – Ralph Waldo Emerson

Improve

More Tests/
More Testing

Better
communication

Better
documentation

Leverage new tools!

Faster Release
Cycle

Workflow + Pipeline

Jenkins verify
(-1/+1)

Code Reviewers
(-2/-1/0/+1+2)

Debian builds (+PPA)

Submit to
{master,$branch}

Release
dashboard

git commit &&
git review

Final Debian
build

$Release
(incl. Q/A)

Available to
Customers

$Product

Internal
tooling

Debian package,
Puppet,...

Development/
Testing

Code
Review

Source: https://memegenerator.net/instance/53083760

Gerrit
GitLab

Phabricator
Review Board

https://memegenerator.net/instance/53083760

Advantages of CR

Share
knowledge

Broadcast
progress

Improve
maintainability

Communal
ownership

Better
code

Gerrit

Git review

Git review - Download

Webinterface Gertty

Gertty: use gerrit without the web

•Good review culture

meaningful
response cycles

include + integrate
newbies/new

employees

be friendly

Source: https://xkcd.com/303/

Waiting for review!

https://xkcd.com/303/

•Best Practices 1

keep reviews as small as feasible
(hint: also makes testing easier)

•Best Practices 2

use Code Review also
for Infrastructure

changes! (IAC)

•Best Practices 3

no direct pushes to
production branch

Traceability via Branches

Branch/Tag
↕

Environment/Release
↕

“vagrant up $release”

Traceability via Commits

“ID#XXXXX“ in commit message
to point to according

issue/bug number

Challenges

Different
timezones

Added
delaysRefactorings

New
workflow

Culture
change

Warning

Laaaaaarge
change?

Tiny
change?

“Uff, +2”

“Please rename
$this, quote the

variable, the logic
could be simplified

like…”

Cough

Source: http://www.bonkersworld.net/code-reviews/

http://www.bonkersworld.net/code-reviews/

Resources

• “Expectations, Outcomes, and Challenges of Modern
Code Review” [URL]

• “Characteristics of Useful Code Reviews: An Empirical
Study at Microsoft” [URL]

• “Code Reviews Do Not Find Bugs. How the Current
Code Review Best Practice Slows Us Down” [URL]

• “On Rapid Releases and Software Testing” [URL]
• “Modern Code Reviews in Open-Source Projects:

Which Problems Do They Fix?” [URL] and also the
other “TestRoots Publications” [URL]

http://research.microsoft.com/apps/pubs/default.aspx?id=180283
http://research.microsoft.com/apps/pubs/default.aspx?id=249224
http://research.microsoft.com/apps/pubs/?id=242201
http://swat.polymtl.ca/~foutsekh/docs/PID2891705.pdf
http://sback.it/publications/msr2014.pdf
http://testroots.org/publications.html

Testing
Tools

Testing Pyramid

Unit Tests

System

Integration Tests

Goss

• https://github.com/aelsabbahy/goss/
• Serverspec-like tool for validation
• Golang one single static binary →
• RSpecish, nagios, json, JUnit + TAP

output available
• Limited to Linux (so far)

https://github.com/aelsabbahy/goss/

Goss Resources

addr is reachable

command exit status and outputs

dns is resolvable

file file exists, owner/perm, content

group uid

package is listening, listening ip

port is running

process Is running

user uid, home, etc..

Goss - Demo

mika@osdc ~ % goss autoadd ssh
Adding Group to './goss.yaml':
ssh:
 exists: true
 gid: 103
Adding Package to './goss.yaml':
ssh:
 installed: true
 versions:
 - 1:6.7p1-5+deb8u2
Adding Process to './goss.yaml':
ssh:
 running: true
Adding Service to './goss.yaml':
ssh:
 enabled: true
 running: true

Goss - Demo

mika@osdc ~ % cat goss.yaml
package:
 ssh:
 installed: true
 versions:
 - 1:6.7p1-5+deb8u2
service:
 ssh:
 enabled: true
 running: true
group:
 ssh:
 exists: true
 gid: 103
process:
 ssh:
 running: true

Goss - Demo

mika@osdc ~ % goss validate goss.yaml
.......

Total Duration: 0.066s
Count: 7, Failed: 0
mika@osdc ~ % goss add port 22
Adding Port to './goss.yaml':

tcp:22:
 listening: true
 ip:
 - 0.0.0.0
mika@osdc ~ % goss validate goss.yaml
.........

Total Duration: 0.070s
Count: 9, Failed: 0

Goss - Demo

mika@osdc ~ % sed -i 's/tcp:22/tcp:23/' goss.yaml
mika@osdc ~ % goss validate --format tap goss.yaml
1..9
ok 1 - Group: ssh: exists: matches expectation: [true]
ok 2 - Group: ssh: gid: matches expectation: [103]
ok 3 - Service: ssh: enabled: matches expectation: [true]
ok 4 - Service: ssh: running: matches expectation: [true]
ok 5 - Process: ssh: running: matches expectation: [true]
not ok 6 - Port: tcp:23: listening: doesn't match, expect:
[true] found: [false]
not ok 7 - Port: tcp:23: ip: doesn't match, expect:
[["0.0.0.0"]] found: [null]
ok 8 - Package: ssh: installed: matches expectation: [true]
ok 9 - Package: ssh: version: matches expectation: [["1:6.7p1-
5+deb8u2"]]

py.test

• Pytest.org
• Fixtures, Scopes, Monkeypatching
• JUnit + TAP output (hello Jenkins!)
• Plugins
• Example + starting point:

– https://github.com/vincentbernat/ll
dpd/tree/master/tests/integration
– http://www.slideshare.net/VincentBer

nat/pytest-all-the-things

https://github.com/vincentbernat/lldpd/tree/master/tests/integration
https://github.com/vincentbernat/lldpd/tree/master/tests/integration
http://www.slideshare.net/VincentBernat/pytest-all-the-things
http://www.slideshare.net/VincentBernat/pytest-all-the-things

Package dependencies

• Dose-distcheck
• Are package dependencies/conflicts

satisfiable?
– dose-debcheck for Debian packages
– dose-rpmcheck for rpm packages
– dose-eclipsecheck for OSGi plugins

Puppet Testing

Puppet testing: see David Schmitt’s talk
“Introduction to Testing Puppet Modules” at

2:15pm on Thursday at OSDC

Puppet-lint

RSpec-puppet

Beaker

Tests + Infrastructure 1

Tests for everything ASAP!

avoid problems during commit/push time +
don't rely on historic/explicit knowledge →

new employees will have a hard time otherwise

Tests + Infrastructure 2

Test systems to
work on infrastructure

without breaking production

Tests + Infrastructure 3

Test infrastructure
really for everything

testing a change for the test builds/scripts?
use test environment!

Related Resources

• „Advanced Testing
with Go“ [URL]

• „System Testing
with pytest and
docker-py“ [URL]

• Book “How Google
Tests Software”

Source: https://twitter.com/francesc/status/718604718294097920

https://speakerdeck.com/mitchellh/advanced-testing-with-go
https://docs.google.com/presentation/d/1RoxFXCOOnXOZZzOivV7mqTs5-B-pxgKCkvX2flianvc/mobilepresent?pli=1#slide=id.p

Docker

Obligatory Docker Slide

Source: https://twitter.com/sadserver/status/718455853540487168

https://twitter.com/sadserver/status/718455853540487168

Source: https://twitter.com/mfdii/status/697532387240996864

https://twitter.com/mfdii/status/697532387240996864

Our use cases

Fast test cycle to
avoid long feedback

loops in CI/CD
pipeline Share environment

between developers
and testing

infrastructure
Developers should be

able to control testing
infrastructure

Internal docker registry

Docker-registry
Docker-distribution
(implementation of

Docker Registry
HTTP API V2 for

docker 1.6+)

Fast moving

•Workflow

 Image lifecycle is
tricky though (when

to build/destroy,
naming + tagging
conventions,…)

Every project ships its
own Dockerfile(s),
Jenkins identifies

changes and rebuilds
the docker images

Infrastructure
Tooling

Puppet related

• Puppet environments + r10k
• Hiera
• Puppetdb + ansible
• Mcollective
• Puppet codebase from 2.7 to 4.3
• Puppetdashboard puppetboard→
• Own puppet modules Puppet Forge→

Monitoring?

Long running tests failing with
ENODISKSPACE

automatic cleanups
(get rid of old artifacts, caches,…) +

use appropriate monitoring

Monitoring

Metrics + Logging

what is taking long + is worth
improving/investigating/....?

(ELK, Graylog, InfluxDB, Grafana,…)

Monitoring Software

Check-mk

Icinga 2 with puppet-icinga2

Vagrant/Packer +
grml-debootstrap

Grml-debootstrap for building Debian
(based) base boxes [URL]

Vagrant + Packer by HashiCorp
(Packer = replacement for Veewee,

hit Debian/unstable today [URL])

https://github.com/grml/grml-debootstrap/tree/master/packer
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=740753#98

Disaster recovery

• Daily fresh installation
of nodes

• PIN-protected USB pen
drive with sensitive
data on it (e.g. hiera)

• iPXE + Grml ISO with
netscript=… boot
option to deploy

• netboot.xyz

Source: https://www.istorage-uk.com/product/datashur/

Antipatterns

Thx @ThePracticalDev + http://dev.to/rly

https://twitter.com/thepracticaldev
http://dev.to/rly

Thx @ThePracticalDev + http://dev.to/rly

https://twitter.com/thepracticaldev
http://dev.to/rly

Thx @ThePracticalDev + http://dev.to/rly

https://twitter.com/thepracticaldev
http://dev.to/rly

Thx @ThePracticalDev + http://dev.to/rly

https://twitter.com/thepracticaldev
http://dev.to/rly

Thx @ThePracticalDev + http://dev.to/rly

https://twitter.com/thepracticaldev
http://dev.to/rly

Thx @ThePracticalDev + http://dev.to/rly

https://twitter.com/thepracticaldev
http://dev.to/rly

Thx @ThePracticalDev + http://dev.to/rly

https://twitter.com/thepracticaldev
http://dev.to/rly

Thx @ThePracticalDev + http://dev.to/rly

https://twitter.com/thepracticaldev
http://dev.to/rly

Thx @ThePracticalDev + http://dev.to/rly

https://twitter.com/thepracticaldev
http://dev.to/rly

Thx @ThePracticalDev + http://dev.to/rly

https://twitter.com/thepracticaldev
http://dev.to/rly

Thx @ThePracticalDev + http://dev.to/rly

https://twitter.com/thepracticaldev
http://dev.to/rly

Pain
Points

Misunderstandings 1

Different people/teams have
different use cases, understandings,…
of certain things (e.g. meaning + usage of

-1/-2/+1/+2 in Gerrit)

Fix via documentation!

Misunderstandings 2

Cultural differences

Fix via „Team Handbook“,
like the one from Gitlab [URL]

https://about.gitlab.com/handbook/

Debian related 1

Race-free package info updates
AKA „Hashsum Mismatch Error“

Fix see [URL]

http://www.chiark.greenend.org.uk/~cjwatson/blog/no-more-hash-sum-mismatch-errors.html

Debian related 2

Avoid Pre-Depends, they impose harsh
constraints on the package manager,

consequently make upgrades harder + also
cause more problems with piuparts

Debian related 3

The more sophisticated the systems
become, the closer the toolchain needs

stuff Debian has + uses
(britney/dak/piuparts/nose/…)

Debian related 4

Mass changes?

Repository locking problem
with e.g. reprepro :(

Jenkins related 1

Structuring of hundreds/thousands of
Jenkins jobs in jenkins-job-builder isn't
easy, esp. the more exceptions you have

Jenkins related 2

Unreliable tests?

Run them outside of the production pipeline!
Use whitelists/blacklists to reach 100%

coverage over time!

Jenkins related 3

Matrix jobs in Jenkins are not always fun,
use simple plain freestyle Jenkins jobs

when possible

Availability

Downtime of Jenkins :(

Lenient Shutdown
Zuul + Gearman

Jenkins 2.0 with Pipeline

System Design

Some architecture decisions are visible
only after surviving a new $release

(Debian: wheezy jessie)→

Separation

Full-featured PPAs: bound together with
Gerrit topics to share packages from

different projects (new features,
introducing new components/build-

depends,…)

Avoid backwards
compatibility nightmare

Release-specific settings into
release-specific configurations/scripts/…

Take-
aways

Take it home

• Automation is essential
• Configuration Management
• Traceability
• Code Review
• Tests + Testing
• Communication is important
• Bring devs and ops together (“devops“)

Wishes || Questions?

@mikagrml
mika @ github

michael-prokop.at/blog/
prokop (at) grml-solutions.com

http://twitter.com/mikagrml
http://grml-solutions.com/?osdc2016

	Continuous Integration in Data Centers - Further 3 Years Later
	whoami
	Recap from OSDC 2013
	Roadmap
	What do we want?
	Expecations
	Deployment Pipeline
	Why?
	Changes since 2013?
	How did we get there?
	Invest
	Improve
	Workflow + Pipeline
	Code Review
	Code Review Systems
	Advantages of Code Review
	Gerrit
	Git review
	Gerrit patchset
	Git review - Download
	Gertty
	Good review culture
	Best Practices 1
	Best Practices 2
	Best Practices 3
	Traceability via Branches
	Traceability via Commits
	Challenges
	Warning
	Cough
	Resources
	Testing Tools
	Testing Pyramid
	Goss
	Goss Resources
	Goss - Demo 1/4
	Goss - Demo 2/4
	Goss - Demo 3/4
	Goss - Demo 4/4
	py.test
	Package dependencies
	Puppet Testing
	Tests + Infrastructure 1
	Tests + Infrastructure 2
	Tests + Infrastructure 3
	Related Resources
	Docker
	Obligratory Docker Slide
	Containers in Dev vs. Prod
	Our use cases
	Internal docker registry
	Workflow
	Infrastructure Tooling
	Puppet related
	Monitoring?
	Monitoring
	Monitoring Software
	Vagrant/Packer + grml-debootstap
	Disaster recovery
	Antipatterns
	Let's just fix this via SSH
	Flaky Tests
	How to create yet another cronjob
	Manually setting up machines
	How to create checklists everyone hates
	Making your business depend on others
	How to report so no one can parse it
	How to rebuild stuff like a pro
	Successfully preventing configurability
	How to get people to stare at Jenkins web
	Excuses for not writing Unit Tests
	Pain Points
	Misunderstandings 1
	Misunderstandings 2
	Debian related 1
	Debian related 2
	Debian related 3
	Debian related 4
	Jenkins related 1
	Jenkins related 2
	Jenkins related 3
	Availability
	System Design
	Separation
	Avoid backwards compatibility nightmare
	Take-aways
	Take it home
	Wishes || Questions?

