
Michael Prokop

Continuous Delivery of
Debian packages

Terminology

• Continuous Integration
–well known from software

development
• Continuous Deployment

–Q/A criteria says OK? Ship/deploy!
• Continuous Delivery

– release whenever you decide it's
useful to do so (= business
decision!)

Why?

Costs of a Bugfix

Requirements Design Code Devevelopment Accounting Operations
0

20

40

60

80

100

120

140

160

Source: Barry Boehm's „EQUITY Keynote Address“

Independence

Source: http://decarabia.soup.io/post/241926962/Image

Scaling

Source: https://www.flickr.com/photos/scobleizer/4870003098/

Reproducible

Source: https://wiki.debian.org/ReproducibleBuilds

Predictable

Source: https://xkcd.com/612/

Problems

Problems $company
experienced 1/2

• Mess with golden images (to ship a
custom software stack to customers)

• Long build times (e.g. single change
→ rebuild full image, upload to
customer,...)

• Builds non-reproducible (unmanaged
build infrastructure, devs can build
+ include their own packages,...)

Problems $company
experienced 2/2

• Release process holding back ongoing
development work (VCS freezes are
preventing ongoing work)

• Getting more and more customers → not
scaling (golden images → even worse)

• Tried Debian source package uploads to
custom build service → many pitfalls +
developers still needed to manually
build/release packages (some of them not
even using Debian/Ubuntu → tools like git-
dch, debuild,... unavailable)

What do
we want?

Deployment Pipeline

Source: http://continuousdelivery.com/2010/02/continuous-delivery/

http://continuousdelivery.com/2010/02/continuous-delivery/

Workflow

Jenkins verify
(-1/+1)

Code Reviewers
(-2/-1/0/+1+2)

Debian builds (+PPA)

Submit to
{master,$branch}

Release
dashboard

git commit &&
git review

Final Debian
build

$Release
(incl. Q/A)

Available to
Customers

$Product

Internal
tooling

Debian package,
Puppet,...

Development/
Testing

How did we
get there?

Principles

• Rely on Debian packages + Debian
repositories for everything (no
exceptions)

• Only what's under version control
matters (no option to build
something manually on your own
system)

• Automate infrastructure handling
(Puppet/Ansible)

Automation

• Automated debian/changelog handling to
simplify releasing of new package versions
(devs don't need Debian/Ubuntu at all)

• Automated release branch handling (release
0.42 is available as such a branch)

• VMs for testing/development (via Vagrant →
run `vagrant up $product-$version`,
automated box builds at least once per day)

• PPAs for development (no VCS freezes, fast-
forward + release branches only)

Improvements

• Usage of tmpfs/eatmydata,
ccache,... for build speedups

• Dashboards for abstraction + let
people focus on their tasks instead
of tools

• Code review system (improves code
quality but also sharing knowledge
+ introducing new people)

Jenkins-
debian-

glue

Standards

„The nice
thing about
standards is
that there
are so many
of them to
choose
from.”

Source: https://xkcd.com/927/

Jenkins?

• Hudson: 2004
• Jenkins: 2011
• Weekly releases + LTS versions
• MIT license
• >1000 plugins available
• >120k registered installations (07/15)
• Disclaimer: written in Java, but

absolutely not restricted to Java
projects

Why jenkins-debian-glue?

• Formalize existing knowledge into a
customizable framework

• Provide a common ground to base
(further) work on

• Gather feedback from what other users
(might) need

• Community building
• Don't create new tools and standards,

instead rely on existing and working ones
• Should be easy to use also for non-Debian

folks

What's behind j-d-g?

• Open Source Project (MIT license)
– started in 2011
–>25 contributors
–written mainly in shell, easy to adjust +

extend
• CI server (Jenkins)
• Build environment (cowbuilder/pbuilder)
• VCS (git + svn OOTB)
• Repository management (reprepro + freight)
• Q/A tools: piuparts, lintian, autopkgtest,

pep8, perlcritic, shellcheck, checkbashism

Who's using j-d-g?

• Grml (incl. dpkg, FAI, initramfs-tools,...)
– https://jenkins.grml.org/

• PostgreSQL
– https://wiki.postgresl.org/wiki/Apt

• LLVM
– http://llvm.org/apt/

• Kamailio
– https://kamailio.sipwise.com

• Wikimedia
– https://integration.wikimedia.org/ci/view/Ops-

DebGlue/
• … and many more

Setup? Automatic deployment

% wget https://raw.github.com/mika/\
jenkins-debian-glue/\
master/puppet/apply.sh
% sudo bash ./apply.sh $your_password

http://jenkins-debian-glue.org/getting_started/

https://raw.github.com/mika/
http://jenkins-debian-glue.org/getting_started/

What do I get?

${project}-source

• generate Debian source package using VCS
– (Upstream) Source (orig.tar.xz)
– Debian changes (debian.tar.xz) [optional]
– Control file (.dsc)

• Script generate-{git,svn}-snapshot
• Automates changelog generation (git-dch

ftw, thanks Guido!)
• Important: needs to be run only once per

project (exception: multi distribution usage
in one repository)

${project}-binaries

• Debian Binary Packages (*.deb)
• Script build-and-provide-package

– Automates pbuilder/cowbuilder
setup, usually nothing to do
manually

• Important: build once per
architecture/distribution (exception:
“Architecture: all”)

${project}-piuparts

• Install/deinstall/upgrade testing
(optional)

• Useful since you might forget about
it otherwise

Repository Handling

• Automatic handling of repositories
without manual interaction
– reprepro
– freight

• By default part of ${project}-
binaries job

• Separate usage via ${project}-
repos job:
– BUILD_ONLY vs PROVIDE_ONLY

Further Q/A testing
available OOTB

• Lintian
• Autopkgtest
• perlcritics/checkbashism/

shellcheck/pep8/...
• Results as TAP/jUnit/... reports in

Jenkins available

Example of a Build Pipeline

foo-unit-test foo-source

foo-binariesfoo-piuparts

foo-repos apt-get install $package

git [review|push]

• Automatic lintian
integration in *-source +
*-binaries

• Automatic autopkgtest-
integration in *-binaries

• Optionally Code-Review +
automatic merge to
Master after Q/A

• Optionally further static
code analysis, web tests,
performance tests,...

Managing many Jenkins
jobs without driving nuts?

• usage of jenkins-job-builder to create and
manage Jenkins jobs
– http://docs.openstack.org/infra/syste

m-config/jjb.html
– https://github.com/sipwise/kamailio-

deb-jenkins (example)
• YAML file(s) for configuration

–No webinterface clicking!
–Version control!
–Code review for job changes!

Lessons
learned

Lessons learned 1/3

• Developers needs vs operations/
distribution needs ($package or $version
not available)
–Contribute back to Debian when

reasonable
• Diverse people improve overall quality

–Homogeneous systems, diverse people
• Code review requires good remote working

culture
–Open Source folks are used to remote

working :)

Lessons learned 2/3

• Avoid external dependencies
–Github, CPAN, PyPI, RubyGems,

Puppetlabs, Percona,
$local_debian_mirror... unreachable?
→ set up local mirrors
• Speedup!
• Staging options

• Configuration management (e.g. for setup of
Jenkins slaves) is essential → infrastructure
as code

• Consistent timezones (UTC) + time (NTP!)

Lessons learned 3/3

• Catch 22
– build scripts broken but build infrastructure

receives updates via build infrastructure/scripts?
→ recursion problem
– upgrading from wheezy to jessie, deployment of

configuration management depends on unit-
tests which don't work on jessie yet

• Provide test infrastructure for setup, configuration,...
changes without breaking production

• Rebuild of a system might look different from
currently running one, even with cfgmgmt → use
testing also for cfgmgmt (serverspec, mspectator,
Tests::Server, Test Kitchen,...)

Tips 1/2

• Regular rebuilds of all packages →
apply recent policies + package
build infrastructure changes so
packages are up2date

• mr/myrepos is very useful for
dealing with large amounts of
repositories (thanks joeyh!)

• Integrate CI/CD system into your
monitoring environment

Tips 2/2

• Collect metrics independent from
Jenkins & CO to be able to remove
jobs/builds without losing metrics

• Use gertty cmdline tool if you don't
like gerrit web interface

• Set up „jenkins-verify” job to ensure
Jenkins works as needed

Antipatterns 1/3

• Manual SSH → provide debugging
options instead

• Flaky Tests (fast vs slow hardware,
„sleep X”,...) → people don't trust +
care any longer

• Polling/pull/cronjobs instead of
triggering → get immediate actions
+ effects

Antipatterns 2/3

• Manual setup of machines/configs →
snowflake pattern (AKA they look
alike but are still different)

• No standarized output in tools →
makes parsing hard[er]

• Checklists → use automation
instead

Antipatterns 3/3

• Hardcoding (IP addresses,
hostnames, port number, test
system,...) instead of configurability

• Same thing gets built multiple times
in the deployment pipeline → share
artifact instead

• Lack of notifications for failing
builds/tests/... → developer starts to
wait + poll

Unresolved problems 1/2

• dependency management alla
wanna-build to get package builds
automatically in the right order
(package foo Build-Depends on
package bar → build bar before foo)

• Build-Depends vs Depends, but no
„Test-Depends” (bundler, carton,...)

Unresolved problems 2/2

• „High frequency“ (CI/CD) Debian
repositorities causing apt to often fail
while mirror is updated (“Hashsum
mismatch”)

• piuparts: successful runs even
though there have been issues, e.g.
package that gets tested has
dependency issues though removing
the package itself is considered a
valid solution

Recap – projects possibly
worth a look

• Debian :)
• Jenkins
• Jenkins-debian-glue
• Vagrant
• Gerrit + Gertty
• Jenkins-Job-Builder

Recap – tl;df

• Put everything under version control
• Automation (deployment, cfgmgmt,

release process)
• Custom Dashboards
• Tests, tests, tests
• Rely on established workflows +

tools
• PS: Once you're used to that working

in non-CD environments feels bad

Jenkins-debian-glue BoF

• Date: 2015-08-21
• Time: 18:00-19:00
• Room: Helsinki
• Purpose: In this BoF session we

provide an opportunity to meet
developers + contributors of the
jenkins-debian-glue project, discuss
issues for improvements, upcoming
new features and get your questions
answered.

Questions || Wishes?

@mikagrml
mika (at) debian.org

http://michael-prokop.at/blog/
http://jenkins-debian-glue.org/

Thanks for feedback to Christian Hofstaedtler + Victor Seva

http://twitter.com/mikagrml
http://michael-prokop.at/blog/
http://jenkins-debian-glue.org/

	Continuous Delivery of Debian packages
	Terminology
	Why?
	Costs of a Bugfix
	Independence
	Scaling
	Reproduciable
	Predictable
	Problems
	Problems $company experienced 1/2
	Problems $company experienced 2/2
	What do we want?
	Deployment Pipeline
	Workflow
	How did we get there?
	Principles
	Automation
	Improvements
	Jenkins-debian-glue
	Standards
	Jenkins
	Why jenkins-debian-glue?
	What's behing j-d-g?
	Who's using j-d-g?
	Setup? Automatic deployment
	What do I get?
	${project}-source
	${project}-binaries
	${project}-piuparts
	Repository Handling
	Further Q/A testing available OOTB
	Example of a Build Pipeline
	Managing many Jenkins jobs without driving nuts?
	Lessons learned
	Lessons learned 1/3
	Lessons learned 2/3
	Lessons learned 3/3
	Tips 1/2
	Tips 2/2
	Antipatterns 1/3
	Antipatterns 2/3
	Antipatterns 3/3
	Unresolved problems 1/2
	Unresolved problems 2/2
	Recap - projects possibly worth a look
	Recap - tl;df
	Jenkins-debian-glue BoF
	Thanks! Questions?

